12 research outputs found

    Early‐to-late winter 20th century North Atlantic multidecadal atmospheric variability in observations, CMIP5 and CMIP6

    Get PDF
    The strong multi-decadal variability in North Atlantic (NA) winter atmospheric circulation is poorly understood and appears too weak in climate models. Recent research has shown peak atmospheric multi-decadal variability over the NA in late winter, particularly March, linked to Atlantic multi-decadal variability (AMV) of the ocean. Here a range of NA atmospheric circulation indices are assessed to provide a comprehensive picture of early-to-late winter low-frequency variability and its representation in the latest generation of climate models (Coupled Model Intercomparison Project Phase 6 (CMIP6)). As found for CMIP5, CMIP6 models exhibit too-weak multi-decadal NA atmospheric variability compared to reanalysis data over the period 1862-2005. Consistent with previous research, the eastern part of the NA westerly jet (U700NA) exhibits peak low-frequency variability in March. However, for NA-wide jet speed and the NAO, low-frequency variability and model-reanalysis discrepancies are strongest in January and February, associated with too-weak NA ocean-atmosphere linkages

    Improvements in Circumpolar Southern Hemisphere Extratropical Atmospheric Circulation in CMIP6 Compared to CMIP5

    Get PDF
    One of the major globally relevant systematic biases in previous generations of climate models has been an equatorward bias in the latitude of the Southern Hemisphere (SH) mid‐latitude tropospheric eddy driven westerly jet. The far reaching implications of this for Southern Ocean heat and carbon uptake and Antarctic land and sea ice are key reasons why addressing this bias is a high priority. It is therefore of primary importance to evaluate the representation of the SH westerly jet in the latest generation of global climate and earth‐system models that comprise the Coupled Model Intercomparison Project Phase 6 (CMIP6). In this paper we assess the representation of major indices of SH extratropical atmospheric circulation in CMIP6 by comparison against both observations and the previous generation of CMIP5 models. Indices assessed are the latitude and speed of the westerly jet, variability of the Southern Annular Mode (SAM) and representation of the Amundsen Sea Low (ASL). These are calculated from the historical forcing simulations of both CMIP5 and CMIP6 for time periods matching available observational and reanalysis datasets. From the 39 CMIP6 models available at the time of writing there is an overall reduction in the equatorward bias of the annual mean westerly jet from 1.9° in CMIP5 to 0.4° in CMIP6 and from a seasonal perspective the reduction is clearest in austral spring and summer. This is accompanied by a halving of the bias of SAM decorrelation timescales compared to CMIP5. However, no such overall improvements are evident for the ASL

    A multi-disciplinary perspective on climate model evaluation for Antarctica

    Get PDF
    A workshop was organized by Antarctic Climate 21 (AntClim21), with the topic 'evaluation of climate models' representation of Antarctic climate from the perspective of long-term twenty-first-century climate change.' The suggested approach for evaluating whether climate models over- or underestimate the effects of ozone depletion is to diagnose simulated historical trends in lower-stratospheric temperature and compare these to observational estimates. With regard to more regional changes over Antarctica, such as West Antarctic warming, the simulation of teleconnection patterns to the tropical Pacific was highlighted. To improve the evaluation of low-frequency variability and trends in climate models, the use and development of approaches to emulate ice-core proxies in models was recommended. It is recommended that effort be put into improving datasets of ice thickness, motion, and composition to allow for a more complete evaluation of sea ice in climate models. One process that was highlighted in particular is the representation of Antarctic clouds and resulting precipitation. It is recommended that increased effort be put into observations of clouds over Antarctica, such as the use of instruments that can detect cloud-base height or the use of remote sensing resources

    Back to the future : using long-term observational and paleo-proxy reconstructions to improve model projections of Antarctic climate

    Get PDF
    Quantitative estimates of future Antarctic climate change are derived from numerical global climate models. Evaluation of the reliability of climate model projections involves many lines of evidence on past performance combined with knowledge of the processes that need to be represented. Routine model evaluation is mainly based on the modern observational period, which started with the establishment of a network of Antarctic weather stations in 1957/58. This period is too short to evaluate many fundamental aspects of the Antarctic and Southern Ocean climate system, such as decadal-to-century time-scale climate variability and trends. To help address this gap, we present a new evaluation of potential ways in which long-term observational and paleo-proxy reconstructions may be used, with a particular focus on improving projections. A wide range of data sources and time periods is included, ranging from ship observations of the early 20th century to ice core records spanning hundreds to hundreds of thousands of years to sediment records dating back 34 million years. We conclude that paleo-proxy records and long-term observational datasets are an underused resource in terms of strategies for improving Antarctic climate projections for the 21st century and beyond. We identify priorities and suggest next steps to addressing this

    Antarctic sea ice projections constrained by historical ice cover and future global temperature change

    No full text
    There is low confidence in projections of Antarctic sea ice area (SIA), due to deficiencies in climate model sea ice processes. Ensemble regression techniques can help to reduce this uncertainty. We investigate relationships between SIA climatology and 21st century change in the CMIP6 multi-model ensemble. In summer, under a strong forcing scenario, each model loses the majority of its sea ice. Therefore, models with greater historical SIA exhibit greater reductions, so the observed climatology of SIA strongly constrains projections. Ensemble spread in historical summer SIA is smaller than in CMIP5, and CMIP6 gives a more robust constraint on future SIA. In winter, by 2100 under a strong forcing scenario, 40% of SIA disappears on average, and ensemble spread in historical mean SIA explains approximately half the spread in projected change. A greater winter ice loss in CMIP6 than CMIP5 is explained by the higher climate sensitivities of some CMIP6 models

    The Southern Ocean ecosystem under multiple climate stresses - an integrated circumpolar assessment

    No full text
    A quantitative assessment of observed and projected environmental changes in the Southern Ocean (SO) with apotential impact on the marine ecosystem shows: (i) large proportions of the SO are and will be affected by one ormore climate change processes; areas projected to be affected in the future are larger than areas that are already under environmental stress, (ii) areas affected by changes in sea-ice in the past and likely in the future are much larger than areas affected by ocean warming. The smallest areas (<1% area of the SO) are affected by glacier retreat and warming in the deeper euphotic layer. In the future, decrease in the sea-ice is expected to be widespread. Changes in iceberg impact resulting from further collapse of ice-shelves can potentially affect large parts of shelf and ephemerally in the off-shore regions. However, aragonite undersaturation (acidification) might become one of the biggest problems for the Antarctic marine ecosystem by affecting almost the entire SO. Direct and indirect impacts of various environmental changes to the three major habitats, sea-ice, pelagic and benthos and their biota are complex. The areas affected by environmental stressors range from 33% of the SO for a single stressor, 11% for two and 2% for three, to <1% for fourand five overlapping factors. In the future, areas expected to be affected by 2 and 3 overlapping factors are equally large, including potential iceberg changes, and together cover almost 86% of the SO ecosystem

    The extraordinary March 2022 East Antarctica “heat” wave. Part II: impacts on the Antarctic ice sheet

    No full text
    Between March 15-19, 2022, East Antarctica experienced an exceptional heatwave with widespread 30-40° C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) which caused these record-shattering temperature anomalies. Here in Part II, we continue our large, collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall. These impacts included widespread rain and surface melt which was recorded along coastal areas, but this was outweighed by widespread, high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Finally, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea-ice extent
    corecore